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Abstract

Motivation: Proteins defined by a key amino acid pattern are key players in the exchange of signals

between bacteria, animals and plants, as well as important mediators for cell–cell communication

within a single organism. Their description and characterization open the way to a better know-

ledge of molecular signalling in a broad range of organisms, and to possible application in medical

and agricultural research. The contrasted pattern of evolution in these proteins makes it difficult to

detect and cluster them with classical sequence-based search tools. Here, we introduce Key

Aminoacid Pattern-based Protein Analyzer (KAPPA), a new multi-platform program to detect them

in a given set of proteins, analyze their pattern and cluster them by comparison to reference pat-

terns (ab initio search) or internal pairwise comparison (de novo search).

Results: In this study, we use the concrete example of cysteine-rich proteins (CRPs) to show that

the similarity of two cysteine patterns can be precisely and efficiently assessed by a quantitative

tool created for KAPPA: the j-score. We also demonstrate the clear advantage of KAPPA over other

classical sequence search tools for ab initio search of new CRPs. Eventually, we present de novo

clustering and subclustering functionalities that allow to rapidly generate consistent groups of

CRPs without a seed reference.

Availability and implementation: KAPPA executables are available for Linux, Windows and Mac

OS at http://kappa-sequence-search.sourceforge.net.

Contact: dp.matton@umontreal.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, novel types of proteins defined by a key amino acid

pattern—often referred to as ‘X-rich proteins’—have emerged as im-

portant and diversified actors of molecular signalling in animals and

plants. Although glycine-rich proteins (Mousavi and Hotta, 2005),

proline-rich peptides (Scocchi et al., 2011) and leucine-rich repeats-

containing proteins (Bella et al., 2008) are nowadays the subject of

increasing research, cysteine-rich proteins (CRPs) still remain the

most extensively studied ones (Edstam et al., 2011; Giacomelli

et al., 2012; Hanks et al., 2005; Silverstein et al., 2005).

Although traditional sequence search tools were successfully

used to characterize the diversity of CRPs in various organisms,

implementation of numerous manual data curation steps was always

necessary, with the drawback of being both tedious and time-

consuming. Moreover, manual intervention always introduces the

risk of a subjective, hence, potentially skewed or biased analysis.

In this article, we introduce Key Aminoacid Pattern-based

Protein Analyzer (KAPPA), a new automated sequence search pro-

gram dedicated to the discovery and clustering of ‘X-rich proteins’,

and we assess its performance on plant CRPs.
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Although quite heterogeneous, CRPs share three common fea-

tures: (i) a small size (50–200 amino acids); (ii) the presence of a

signal peptide at their N-termini to allow secretion; (iii) a mature

protein comprising six or more cysteines (usually from 6 to 14).

They are involved in a wide range of functions in living

organisms. For instance, antimicrobial peptides (AMPs) such as

defensins are broadly studied for their role in human innate

immunity against viruses, bacteria and fungi (Pasupuleti et al.,

2012), and in plant responses to pathogens (Odintsova and

Egorov, 2012). Plant–bacteria symbiotic equilibrium relies on

CRPs as well (van de Velde et al., 2010), while venoms from

snakes, spiders and scorpions have also adopted the CRPs as

neurotoxins and myonecrotic agents (Wong and Belov, 2012).

Thus, characterization of these communication mediators opens

the way to future applications for human health and agronomy

(de Souza Cândido et al., 2014).

In addition to their inter-organism communication functions,

CRPs appear to be important messengers for cell–cell signalling

within a single individual. They are particularly involved in the con-

trol of developmental processes, such as seed, root and stomata de-

velopment (Marshall et al., 2011), but also in sexual reproduction in

plants (Chevalier et al., 2011, 2013; Higashiyama, 2010) and in ani-

mals (Koppers et al., 2011).

Numerous families of CRPs like defensins, thionins, albumins,

snakins, lipid-transfer proteins, rapid alkalinization factors

(RALFs), etc. have already been described, each of them being

characterized by a precise cysteine spacing pattern. In several plant

species, these CRPs can represent up to 2–3% of the total genome

(Silverstein et al., 2007). Describing their diversity and evolution

now becomes a major stake in plant, animal and microbe biology.

The structural particularities of CRPs are a challenging issue for

bioinformaticians: on the one hand, the cysteine backbone—which

governs maintenance of disulfide bonds, hence, the 3D structure of

proteins—is highly conserved in a given CRP family, even between

distant species. For instance, all defensins share a c-core and a cys-

teine-stabilized (CS) ab motif (Zhu et al., 2005). On the other hand,

the remaining residues in the sequence—involved in fine and specific

recognition functions—can exhibit a fast evolutive speed, often

underlined by a positive selection. Hence, global sequence identity

can be extremely low in a given CRP family (Supplementary Fig.

S1). As shown in our study, this dual evolutive pattern makes it diffi-

cult to discover paralogues and orthologues of already known CRPs

with classical ab initio sequence similarity search tools.

In addition, the cysteine backbone itself can evolve—though at a

lesser speed—and give rise to new families of CRPs that may be

specific to a given taxon. Literature suggests that CRPs have been

largely under-predicted (Silverstein et al., 2007); it is therefore

essential to be able to detect and cluster CRPs de novo, without

necessarily relying on a set of reference proteins.

The KAPPA workflow, presented in Supplementary Figure S2,

meets this sequence search challenge by extracting and comparing

cysteine patterns by means of a quantitative similarity index called

j-score. This mapping step allows to detect CRPs that are similar to

reference patterns (ab initio search) or to cluster CRPs having simi-

lar patterns without relying on a reference (de novo search). A

BLAST-based subclustering step then allows to refine clustering,

analyzing the remaining amino acids of the sequence and to visualize

output groups of CRPs graphically.

KAPPA is a free program coded in Python 3 and is executable on

most of existing operating systems (Linux, Mac OS, Windows). It

supports sequence search parallelization by multithreading. UNIX

manual pages and a complete user’s guide are also available.

2 Methods

2.1 Cysteine pattern extraction
The first step consists in providing KAPPA with one or several

FASTA files containing protein sequences. Several scripts bundled

with KAPPA can be used to detect open reading frames (ORFs) in a

set of nucleotide sequences (kappa_findorfs), translate them

into proteins (kappa_translate) and predict secretion (kap-

pa_secretion). The latter program relies on SignalP (Petersen

et al., 2011) and SecretomeP (Bendtsen et al., 2004). After sequence

import and FASTA identifier parsing, KAPPA pre-filters proteins to

retain only those susceptible to be true CRPs, according to amino

acid length (options -l and -L) and number of cysteines (options -

m and -M). The user then obtain a list of target proteins.

For each of them, KAPPA analyzes cysteine spacing and creates a

pattern, a 1D vector in which each value corresponds to the number

of amino acids in a sequence block between two cysteines. The first

block corresponds to amino acids before the first cysteine, the last

block to those located after the last cysteine. Two consecutive cyst-

eines define an empty block, represented by a zero in the pattern.

Pattern length describes the number of blocks in a pattern. For ex-

ample, sequence XCXXXCCXCXX gives pattern f1;3; 0; 1;2g, whose

length is 5.

The mapping step then consists in comparing each target pattern

to reference patterns called query patterns. If an ab initio search is

performed, the user must provide query patterns in a separate text

file (option -q). The user can write this file directly or build it from

a set of reference proteins with the kappa_extract_patterns

script. Unlike target patterns, each position in a query pattern com-

prises two values: a minimum and a maximum number of amino

acids. These values can be equal or replaced by letter n to define an

unknown number of amino acids.

Alternatively, if a de novo search is chosen, no reference is

required, since an all-versus-all pairwise comparison of patterns will

be performed: query patterns are simply target patterns themselves.

2.2 Mapping
To determine the similarity level between a query and a target pat-

tern, KAPPA aligns them in all possible configurations, i.e. consider-

ing all possible shifts between them. For each alignment, a j-score

reflecting pattern homology is computed. The maximum j-score ob-

tained among all possible alignments between the two patterns is re-

tained as the final score.

The j-score incorporates three indicators varying between 0 and

1 called block identity, key persistence and alignment coverage,

which describe different aspects of pattern similarity. Figure 1 pre-

sents an example of j-score calculation for two given patterns.

Block identity I aims at describing conservation of the number of

amino acids between query and target aligned blocks. To begin,

KAPPA computes local query-target variation dk at each aligned

position k, as shown in Equation (1), where Q�k and Qþk are the min-

imum and maximum values in the query pattern and Tk the value in

the target pattern at position k.

dk ¼

0 if Q�k�Tk�Qþk

Q�k � Tk

Q�k þ Tk
if Tk < Q�k

Tk �Qþk
Tk þQþk

if Tk > Qþk

8>>>>>>><
>>>>>>>:

(1)

Local identity at position k is the difference 1� dk. Before being

incorporated in the calculation of global identity I, local identity
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values are adjusted with the normalized logistic function f̂ described

in Equation (2).

f̂ aðxÞ ¼
faðxÞ � fað0Þ
fað1Þ � fað0Þ

with faðxÞ ¼
1

1þ e2ða�10xÞ (2)

This step allows penalizing low values and favouring high values

in a more or less restrictive manner, depending on the value attrib-

uted to the user-defined stringency parameter a. The user can thus

choose to be stringent (i.e. considering only perfect identities) or

more permissive. Stringency values are comprised between 0 (low)

and 10 (high). The default is 7.

Identity I is simply computed as shown in Equation (3), where L

corresponds to the number of positions in the alignment. Stringency

on identity aI can be set with option -I.

I ¼ 1

L

XL

k¼1

f̂ aI
ð1� dkÞ (3)

Because residues located before the first cysteine or after the last

one are generally excluded from cysteine pattern analyzes, KAPPA

provides options -n and -c to define a number of N- and C-term

blocks to be ignored in the calculation of identity. The default value

for both of these options is 1.

Key persistence P accounts for maintenance of the cysteine con-

tent itself. Indeed, despite high conservation of cysteine backbones

within a given CRP family, gain or loss of cysteine can occur mar-

ginally in the course of evolution. Options -kg and -kl can then be

used to specify a number of X-to-C or C-to-X substitutions allowed

in the query pattern, respectively. If one or more substitutions need

to be simulated by KAPPA to achieve better identity, persistence P

will decrease, as shown in Equation (4), where S is the number of

substitutions simulated, and L is the length of the pattern where sub-

stitutions occurred. As well as identity, persistence is finally adjusted

with the f̂ function. The stringency aP applied to persistence adjust-

ment through f̂ can be set with option -P.

P ¼ f̂ aP

L� S

L

� �
(4)

Finally, alignment coverage C describes how wide the alignment

is compared to a reference number of blocks Lref . By default, Lref is

the size of the longest pattern, so that coverage is maximized only

when two patterns with similar size are fully aligned. However, one

may want to allow the query pattern to be fully included in the tar-

geted one without making coverage decrease. In this case, option -i

can be enforced. Lref will then be the size of the query pattern

(ab initio search) or the one of the shortest pattern (de novo search).

Raw coverage is adjusted with the f̂ function, taking in account a

specific stringency level aC set with option -C.

C ¼ f̂ aC

L

Lref

� �
(5)

The j-score is eventually computed as the product of I, P and C.

In case of an ab initio search, all sequences matching to a given ref-

erence cysteine pattern with a j-score greater than a threshold

defined with option -S will be assigned to it and exported in a

FASTA file.

2.3 Clustering
If a de novo search is performed, a two-step clustering immediately

follows mapping. Supplementary Figure S3 gives an overview of the

clustering process. First, preclusters are formed recursively by con-

necting all sequences pairs having a j-score above a threshold

defined with option -S1. Second, similarity is assessed for all pos-

sible pairs of sequences belonging to two different preclusters. For

two given preclusters, if more than a certain percentage of these in-

ter-precluster sequence pairs (defined with option -F) have a j-score

above a certain threshold (specified with option -S2), the two pre-

clusters are fused into one final cluster. Final clusters can result from

an unfused precluster as well as from the fusion of two or more pre-

clusters. They are exported in separate FASTA files.

Clusters can be seen as similarity networks. It is then interest-

ing to assess their density (i.e. the number of links between

sequences) and compactness (i.e. the level of similarity between

sequences). Statistical indicators are computed taking in account

all sequence–sequence similarities represented in the cluster, but

also more specifically focusing on intra- and inter-sample similar-

ities only. In addition, option -G can be enforced to generate

network files that can be imported into Cytoscape (Shannon

et al., 2003) to graphically visualize clusters.

2.4 Subclustering
Mapping and clustering steps allow assembling families of proteins

sharing similar cysteine backbones. However, the remaining elem-

ents of the sequence are also of interest to refine this clustering.

Indeed, CRPs also contain motifs or domains conserved on a more

or less large scale that can be used to define subgroups within clus-

ters. Users may want to split large families of CRPs into smaller,

motif-defined subclusters; or to analyse paralogy and orthology rela-

tionships within a cluster.

The subclustering step consists in using BLASTp to make pair-

wise comparisons of all sequences within each group, relying on a

network approach that was first developed in clustering tools such

as EGN (Halary et al., 2013). Two sequences are grouped into the

same subcluster, if BLAST characteristic values pass a user-defined

threshold: e-value, percentage of identity, percentage of positive

matches, hit length, alignment coverage (options -sE, -sI/-sJ, -

sP/-sQ, -sL and -sC, respectively). Moreover, the user can use op-

tion -sR to enforce a reciprocity condition: two sequences will be

considered similar if they are reciprocal best or near-best hits.

Here again, several density and compactness indicators are

computed for each subcluster and graphical visualization with

Cytoscape is possible through option -G.

2.5 Optimization
Several options affecting mapping and clustering granularity are to

be set by the user. Therefore, finding the optimal combination of

Fig. 1. Example of j-score calculation between two patterns, with default stri-

gency (aI ¼ aP ¼ aC ¼ 7) and one loss or gain of cysteine allowed
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parameters to fit biological reality is a crucial issue. Two kinds of

pitfalls especially need attention: (i) the ‘snowball effect’ taking

place when most of the proteins are clustered into the same big

group because of too permissive settings and (ii) the accumulation of

singletons due to too stringent parameters.

To overcome these problems, the kappa script allows the user to

provide several values for each option instead of one. The script will

then execute KAPPA on the input target proteins, considering all

possible combinations of parameters among those provided by the

user. The output is a large table presenting, for each combination

tested, a broad range of statistical indicators the user can explore to

determine the most suitable settings.

2.6 Performance tests
2.6.1 Reference proteins

In experiments described in Sections 3.1 and 3.2, we used reference

small families of CRPs from Arabidopsis and rice as query proteins.

LTP1s (subfamily 1 of non-specific lipid-transfer proteins) were

retrieved from Edstam et al. (2011). Three OsLTP1s that were obvi-

ously not LTP1s in terms of cysteine pattern were removed from the

dataset (Os11g02330.1, Os11g02379.1 and Os12g02290.1), be-

cause they would have skewed the analysis. True defensins and

snakins come from groups CRP0000 and CRP2700 published by

Silverstein et al. (2007), respectively.

2.6.2 Expected outputs

In Section 3.2, we assessed the quality of outputs from several se-

quence-based search tools by comparing them to ‘expected outputs’,

i.e. known lipid-transfer proteins (LTPs) and defensin-like proteins

(DEFLs). Reference LTPs correspond to those described in

Arabidopsis and rice by Edstam et al. (all subfamilies described in

the study) and Silverstein et al. (groups CRP3800–4958). Reference

DEFLs are those described in Silverstein et al. only (groups

CRP0000–1520).

2.6.3 Target proteomes

We used the Arabidopsis thaliana (Swarbreck et al., 2008) and

Oryza sativa subsp. japonica (Ouyang et al., 2007) proteomes avail-

able on line from Phytozome v9.1 (http://www.phytozome.net) as

target sets of proteins for assessment of KAPPA performance in

Section 3.

2.6.4 Dataset calibration

Studies from which reference proteins were retrieved used older re-

leases of the Arabidopsis and rice proteomes. To ensure consistency

between our datasets, we did not use reference proteins directly, but

the corresponding sequences from the Phytozome proteomes men-

tioned earlier. In a small minority of cases, no homologue—or only

a distant one—was found, since some proteins turned to be obsolete

or because they corresponded to pseudogenes rather than true

proteins. We simply discarded them. This only affected ‘expected

outputs’, not query proteins.

2.6.5 Software

In Section 3.1, MUSCLE (Edgar, 2004) was used for pairwise and

multiple protein alignments; identities were computed on the hit with

a homemade script. In Section 3.2, we used HMMER 3.0 (Finn et al.,

2011), BLASTp (Altschul et al., 1990), PSI-BLAST and PHI-BLAST

(position-specific Iterated and pattern hit initiated BLAST, respec-

tively) (Altschul et al., 1997) from the BLASTþ2.2.29 suite. All pro-

grams were used with default parameters, unless otherwise specified.

3 Results

3.1 Relevance of the j-score
We first tried to check if the j-score is relevant to describe conserva-

tion of the cysteine backbone within two well-known CRP families:

true defensins and snakins described by Silverstein et al. (2007) and

the LTP1 subfamily described by Edstam et al. (2011). In all cases,

we analyzed together proteins from A. thaliana and O. sativa.

Multiple alignments of these proteins can be found in Supplementary

Figure S1. Within each family, proteins were pairwise aligned with

MUSCLE and identity on the alignment was computed. Besides,

KAPPA was used to determine the j-score for each pair of proteins.

As can be seen in Figure 2, pairwise identity can vary to a large

extent while the j-score always remains high within a given CRP

family. This holds especially true for LTP1s, which have conserved

cysteine spacing. However, defensins include proteins with a more

distant pattern, which led to a slight decrease of the j-score for a

few data points. The general conclusion of this test is that the j-

score is a simple but reliable quantitative tool to assess conservation

of the cysteine spacing.

3.2 Ab initio discovery of CRPs
KAPPA provides an ab initio sequence search function, consisting in

detecting proteins matching to a given reference cysteine pattern.

We compared performance of KAPPA, HMMER, BLASTp, PSI-

BLAST and PHI-BLAST in detecting known LTPs and LTP-like pro-

teins in the Arabidopsis proteome (Fig. 3 and Supplementary Fig.

S4). KAPPA was provided with a consensus cysteine pattern made

with kappa_extract_patterns after alignment of AtLTP1s

with MUSCLE (Supplementary Table S1). HMMER was provided

with a position-specific scoring matrix (PSSM) made with

hmmbuild using the same alignment. Programs from the BLASTþ
suite were given, AtLTP1s, as query proteins. In addition, a perfect

consensus cysteine pattern of AtLTP1s was given to PHI-BLAST.

As we can see on Figure 3, KAPPA was sensitive because the vast

majority (�98%) of the 128 AtLTPs described by Silverstein et al.

(2007) and Edstam et al. (2011) were detected. Only three known

AtLTPs were not detected by KAPPA: AT1G05450.1,

AT3G63095.1 and AT5G38197.1. The first one was not found sim-

ply because it does not contain any cysteine residue. The two latter

ones do have cysteines, but their spacing is different from the canon-

ical LTP pattern. Therefore, their j-score was low and they were dis-

carded by KAPPA. One may conclude that these three proteins were

inappropriately described as LTPs in previous studies.

Interestingly, KAPPA also detected 85 new LTP-like proteins.

This is mainly due to a better performance with respect to sequence

search strategies used in previous studies, but also to the use of a

more recent release of the Arabidopsis proteome (14 out of the 85

new LTPs were not present in The Arabidopsis Information

Resource (TAIR6) database used by Silverstein et al.). Sequence

identifiers of proteins detected by KAPPA are listed in

Supplementary Table S2.

Contrary to other methods, KAPPA also achieved high specificity

because the j-score made it possible to reject non-related sequences

efficiently. Here, we have used a 70% threshold, which appeared to

be an adequate value to work with divergent CRPs such as LTPs

(Supplementary Fig. S5). Not only KAPPA provided the best sensi-

tivity-specificity trade-off, but its execution was also �9 times faster

than the second best method, PSI-BLAST with 3 iterations

(Supplementary Fig. S6).

BLASTp and PSI-BLAST could easily find the LTP-like proteins

presenting a high sequence identity to input AtLTP1s. However,
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more dissimilar LTP-like proteins could not be retrieved unless the

stringency level was decreased. In this situation, a high number of

non-related proteins accumulated in the output since they have the

same low sequence similarity to AtLTP1s. Supplementary Figure

S4C shows that the j-score correctly discriminated LTP-like pro-

teins from other sequences, including LTP-like with a low sequence

identity, whereas the BLASTp e-value did not make a difference.

Supplementary Figures S4D–G show this was the same for outputs

from other programs.

PHI-BLAST and HMMER appeared to be way more efficient in

detecting target LTP-like CRPs without accumulating non-related

proteins. However, they were also much more restrictive. Although

they were able to give more weight to cysteine residues in the simi-

larity search, both tools seemed unable to deal with variation in

cysteine number and spacing. In contrast, KAPPA took advantage of

a more or less stringent calculation of block identity I and key resi-

due persistence P to address this issue.

Another problem may be due to the fact we used proteins stem-

ming from the same LTP subfamily and from one single species. In

this situation, residues that are common to all input proteins can not

only be cysteine characteristic of all LTPs, but also other residues

that are specific to AtLTP1s only. Although the first ones are

expected to be highly conserved in other LTP subfamilies and in

other species, the latter may have changed more rapidly in the

course of evolution. Yet, the algorithms to which we compared

KAPPA gave the same weight to all of these residues, which can limit

their performance in detecting more distant LTP-like proteins.

KAPPA’s efficiency in ab initio sequence search was also demon-

strated taking other examples. We first looked for AtLTP1s in rice

(Supplementary Fig. S7), and then turned to study other families of

plant CRPs described by Silverstein et al. (2007): defensins

(Supplementary Figs. S8 and S9) and snakins (Supplementary Figs.

S10 and S11). Finally, KAPPA was tested with other key residues:

2008 human and 1917 mouse proteins containing the extended

A B C

Fig. 2. Comparison of all-versus-all pairwise identities and j-scores within three reference CRP families. KAPPA was used with default parameters, except for

defensins for which one gain or loss of cysteine was allowed

A B

Fig. 3. Assessment of ab initio sequence search performance for KAPPA and other programs. (A) Comparison of outputs from different programs. AtLTP1s were

used as input sequences to parse the A. thaliana proteome available in Phytozome 9.1. KAPPA was used with parameters specified in Supplementary Table S1.

Other programs were used with default parameters and three levels of stringency based on e-value: 10�3 (***), 1 (**) or 1000 (*). PSI-BLAST was run with 1, 2

and 3 iterations. Colours refer to the j-score of the output sequences with respect to the consensus pattern of AtLTP1s. Known AtLTPs described by Silverstein

et al. (2007) and Edstam et al. (2011) were used to define a minimal expected output. (B) Sensitivity-specificity ROC plot comparing performances of KAPPA and

other programs, using known AtLTPs as reference true sequences. Sensitivity refers to the true positive rate while specificity corresponds to the true negative

rate. Values indicated on the graph correspond to the area under the curve
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glycine zipper (EGZ) motif described by Kim et al. (2005) were dis-

covered (Supplementary Figs. S12 and S13). Moreover, KAPPA

could also efficiently find all members of the small proline-rich

protein 2 (SPRR2) family (Cabral et al., 2001) in human and mouse

proteomes (Supplementary Figs. S14 and S15).

As shown in Supplementary Figure S16, BLASTp, PSI-BLAST

and HMMER could perform as well as KAPPA when studying pro-

tein families displaying high sequence identity (e.g. snakins,

SPRR2s). PHI-BLAST also efficiently detected target proteins when

the key residue spacing is highly conserved (e.g. snakins, EGZs).

However, KAPPA’s performance was equal or superior to other pro-

grams in all cases, combining high sensitivity and specificity.

KAPPA thus appears to be a reliable, all-purpose tool to detect any

type of protein displaying a key amino acid pattern, with a clear ad-

vantage over existing methods when dealing with families displaying

extensive sequence divergence or small variations in the key residue

spacing.

3.3 De novo clustering of CRPs
Once potential CRPs are detected by the pre-filtering function or by

a reference-guided ab initio search, it may be of interest to split them

into clusters defined by precise cysteine spacing. Indeed, Edstam

et al. (2011) described 79 LTPs in A. thaliana and divided them into

nine clusters and three singletons. Likewise, Silverstein et al. (2007)

found 131 new LTPs fragmented into 23 clusters and 8 singletons.

In both of these studies, clustering is performed in a more or less ar-

bitrary way, taking into account not only pattern but also sequence

similarity. Thus, this experimental procedure can be long, tedious

and partially subjective.

KAPPA introduces the possibility of clustering proteins (i)

de novo, i.e. without relying on a set of reference patterns; (ii) in an

automated fashion and (iii) using clear quantitative criteria. As a

first step, the j-score can be used to perform a pattern-based cluster-

ing of proteins. Second, the remaining sequences can be used to

launch a subclustering step based on classical sequence similarity

values (e.g. percentage of identities and positives).

Because KAPPA detected 210 LTPs in the previous section, we

tested its ability to divide them into clusters that would be consist-

ent (high intra-group similarity) and distinct from each other

(lower inter-group similarity). The de novo clustering function

was used as follows: first, all pairs of proteins connected with a

j-score �97% were recursively bound to form preclusters, which

were fused to form final clusters if �90% of inter-group sequence

pairs had a j-score above 95%. These settings, chosen with the

KAPPA optimization function, yielded 21 LTP clusters and 46

singletons.

Figure 4A compares the structure of AtLTPs clusters formed by

KAPPA, Edstam et al. (2011) and Silverstein et al. (2007). The strin-

gent criteria we used to build KAPPA clusters led to a high intra-

cluster pairwise j-score with a narrow distribution that is clearly

distinct from a low, wide distribution of inter-cluster j-scores.

Cluster homogeneity is still clear for Edstam’s clusters, but starts to

be questionable for Silverstein’s clusters, because a notable propor-

tion of intra-cluster pattern similarities are lower than inter-cluster

similarities.

Figure 4B and Supplementary Table S3 shed light on the relative

homogeneity between clusters generated automatically by KAPPA

and manually by Edstam et al.: KAPPA perfectly reformed clusters

AtLTP1, AtLTP2, AtLTPc and AtLTPe and extended the two first

with new proteins (in grey). Clusters AtLTPd and AtLTPg were frac-

tioned into 2 and 3 KAPPA clusters, respectively. Attention paid to

protein alignments (Supplementary Fig. S17) clearly shows this sep-

aration is supported by differences in the cysteine spacing.

Moreover, 3 of the 4 Edstam’s singletons (AtLTPx, in black) could

now be assigned to clusters.

The nine KAPPA clusters represented in Figure 4B gathered 136

proteins (65% of the total) and contained on average 15.1 proteins

per cluster. These proteins are quite close to the original AtLTP1s

A B

Fig. 4. Compared clustering performance on AtLTPs. (A) Distributions of j-scores for all possible pairs of sequences belonging to the same cluster (intra) or to

two different clusters (inter) in AtLTPs clusters generated by KAPPA (210 LTPs, 21 clusters and 46 singletons), Edstam et al. (79 LTPs, 6 clusters and 3 singletons)

and Silverstein et al. (131 LTPs, 23 clusters and 8 singletons). (B) Graphical view of the nine KAPPA clusters containing at least one of the 79 LTPs from Edstam

et al. (2011) generated with Cytoscape. Coloured nodes correspond to LTPs described by KAPPA and Edstam et al.; grey nodes represent LTPs newly described

by KAPPA. Edge length reflects pattern similarity: the longer the edge, the smaller the pairwise j-score
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that were used as queries for the ab initio search, with a mean j-

score of 91.0% with respect to the AtLTP1 cysteine pattern.

The remaining 74 proteins were, however, distributed into 12

smaller clusters (2.2 proteins per cluster) and 48 singletons. Their

isolated status probably reflects their more distant nature as LTP-

like proteins. Indeed, they all correspond to LTPs that were not

described by Edstam et al. (except one AtLTPg) and their mean j-

score with respect to the AtLTP1 pattern was much lower (75.7%).

Together, these results suggest that the KAPPA clustering func-

tion is able to reproduce and improve previous, manually formed

groups.

4 Discussion

By providing an automated pipeline specifically dedicated to the

evolutive specificities of proteins defined by a key amino acid pat-

tern, like CRPs, KAPPA fills a gap in the landscape of sequence

search computational tools. Supplementary Table S4 presents salient

advantages of KAPPA over more conventional approaches.

The j-score appears to be a robust, quantitative and objective

tool to describe cysteine pattern similarity and explore all its aspects:

block identity I accounts for subtle modifications of cysteine spacing

within a given family, while pattern persistence P allows to investi-

gate emergence of new groups of CRPs within a given taxon.

Numerous families of CRPs have been detected and

characterized so far in a small number of model organisms.

Moreover, the number and availability of new sequenced proteomes

is quickly growing, especially for non-model organisms. Considering

the functional importance of CRPs in plants and animals, there is an

increasing need to characterize their orthologues in these new

proteomes.

Focusing on the cysteine spacing with the j-score, the KAPPA

ab initio search function made it possible not only to detect new

members of CRP families within reference species themselves, but

also orthologues belonging to more distant species. Furthermore,

the ab initio search is also flexible, since mapping parameters,

especially stringency options, enable users to choose an optimal

research framework. One can indeed decide to be strict in the

similarity search, using a high j-score threshold or high stringency

parameters, or more permissive and detect new ‘-like’ proteins.

Traditional sequence search approaches such as BLASTp do not

make a difference between key residues and the rest of the sequence;

hence, true homologues of input CRPs are intermingled with

non-related, low similarity sequences. Although HMMER and PSI/

PHI-BLAST can give more weight to cysteines and other conserved

residues, they are less performant in dealing automatically with

extensive divergence of blocks between cysteines, and with fine

modifications of the cysteine spacing itself. This is why previous re-

ports dealing with CRPs always implemented curation steps relying

on manual review of data or home-made scripts to obtain a consist-

ent final protein dataset.

Though often leading to correct results, this time-consuming ap-

proach is suboptimal when dealing with large-scale, proteome-wide

studies. KAPPA addresses this issue by providing a fast and accurate

analysis pipeline based on quantitative criteria. Moreover, the opti-

mization functionality makes it easy to determine the best param-

eters for a given sequence search experiment.

Besides providing an automated pipeline, KAPPA also innovates

by relieving the user of the need for reference cysteine patterns.

Indeed, the de novo search and clustering function applied to a

whole proteome can uncover totally new families of CRPs without a

reference.

In the challenging case of proteins defined by a key amino acid

pattern, KAPPA provides a new and accurate detection method over

HMMER-based sequence search strategies implemented in previous

CRP studies (Silverstein et al., 2007; Edstam et al., 2011) and in

gene-finding pipelines such as SPADA (Zhou et al. 2013).

Implementation of KAPPA on available proteomes opens the

way to a better and quicker understanding of the diversity, evolution

and functions these peculiar proteins, as shown for the CRPs, EGZ

proteins and SPRR2s.
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